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Abstract

Visualising a detailed quantum state is often a very challenging task due to the major differences
from the classical world seen around us. Wigner functions are a neat aid to this process and provide a
quasi-probability distribution in phase space for a pair of variables. This report calculates the Wigner
function for a variety of quantum harmonic oscillator states. Pure coherent and number states are
considered along with mixed states and Schrédinger cat states. Finally Wigner functions for thermal
states of a quantum harmonic oscillator are calculated for different temperatures.

It is found that coherent states are of the lowest uncertainty and, in the general case, also evolve in
time as a classical oscillator would. Number, mixed and Schrédinger cat states are found to be highly
quantum states often with no classical analogy while thermal states are found to have an uncertainty
that varies with temperature.
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1 INTRODUCTION

1 Introduction

1.1 Aims

This project aimed to calculate and plot the Wigner function for a variety of pure and mixed states of
the quantum harmonic oscillator. Using these plots this report aims to discuss the differences between
different quantum states and how they can be visualised or compared to classical states with which we
are more familiar.

1.2 Background

Modern quantum mechanics continues to offer an ever more detailed description of the quantum states
of yet more complex systems. The deeper and more interesting these descriptions become, the harder
it can be to visualise these states, mainly due to their lack of similarities with the much more familiar
classical world.

In the classical world a particle has a known position and a momentum, so for an ensemble of particles
we can generate a probability distribution, allowing us to know the probability of finding a particle
with a given position and momentum. As we know, this is not the case in the Quantum world; the
Heisenberg Uncertainty principle stipulates that we cannot know the position and momentum of a particle
simultaneously where their uncertainties shrink below a certain level. In this quantum world we must
consider a quasi-probability distribution in order to take account of the non-classical outcomes.

In this report we will consider the Wigner function, a widely used quasi-probabalistic function with
applications ranging from molecular dynamics to quantum optics and much further.

1.2.1 Visualising Quanta

One way of visualising a state is to consider the probability density functions of individual properties of
that state. For some variables this is straight forward: if the wavefunction of a state is known to be ()
one can find the probability density in position space by simply squaring it’s modulus, [y (x)|2

It is quite straight forward to interpret this idea of position by plotting the probability density and
looking at the most likely position to find an object. The expectation value for a property is based on

this exact feature [4, p.92,eqs:4.31,4.32]

@»:/wwwfqux=@|wx> (1)

Where 7 is the operator associated with position x and integrals are over all space.
For other variables however things are not so straight forward. The momentum distribution ® (p) can
be found as below [1, p.937]

®(p) = [ exp(~iap/h)do = (p] ) )

Where p is momentum, A is a constant and, as before, integrals are over all space.

Again, squaring the modulus gives the probability distribution, however visualising this function is
not easy without position information. This is where the Wigner function is of use as it allows us to
simultaneously plot the momentum and position probability distributions in phase space. The result can
help visualise the information in a way with which we are much more comfortable.

1.2.2 The Wigner Function

Plotting in phase space is very useful when it comes to making comparisons between the quantum world
and the classical world. As previously mentioned, in the classical world the position and momentum of a
particle can be known simultaneously, meaning it is possible to plot its trajectory through phase space. If
an ensemble of trajectories are considered a probability distribution in phase space can be plotted, which
can conveniently be compared to the Wigner function. This provides a nice way of comparing quantum
and classical mechanics. Although the Wigner function can be used for any pair of variables, throughout
this report position, x, and momentum, p, will be considered so that comparisons with the classical world
can be made. When making these comparisons it is important to remember that the Wigner function is
a quasi-probability; it may produce a negative value, for which there is no classical analogy (see the Fock
States where n > 0 for examples, in section 3.4).
The Wigner function is defined as the following [2, pg.64]
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W (q,p) = ﬁlh /_i P* (q - g) 0 (q + g) e/ My (3)

Or, most generally in dirac notation (making use of the density operator, p):
1 o T T .
- R N\ Jipx/h
W(a.p) = 5~ /_Oo<q 5 | pla+ e dz (4)

1.2.3 The Harmonic Oscillator

Throughout this project the harmonic oscillator has been studied as it is the simplest quantum system.
Tts wavefunction is [4, p.95,eq:4.69]

H, (5)e "/
(n12nay/7)"?

Or, in the ground state (as used in section 3.1 and the derrivation in appendix C.1):

mw

Where a = /-
The coherent state of the harmonic oscillator can be found to be the following:

Yo (q) = (a\l/?r) i (2?12 —(E-v2a)/2 o

As coherent states are the superposition of every number state, each with a specific probability —
the equation above describes pure coherent states, which minimal uncertainty in both their position and
momentum.

For thermal states the density operator p is

Where

2 )

and

25 res((n2) 1) a0

n=0
Therefore thermal states are the superposition of all the number states multiplied by the probability
of the particle being found in that state.

1.2.4 Quantum States

The states used in this report have been chosen for their unique attributes.

e The ground state (the Fock state with n = 0) represents the lowest energy possible from a quantum
state. Its shape should be similar to the gaussuan distribution, given below [4, p.58,eq:2.552], where
subscript « shows that the term is the sum of its contents over each dimension required, p is the
mean and o the variance.

1 —(z—p)?
F= oaV2m P ( (wcﬂu)a> (11)

e Number states (or Fock states) are pure states, so called because they cannot be recreated by the
combination of other states. In a manner similar to Fourier Transforms, the Fock states can be
used as the basis to create other states.



1.3 Layout 2 METHOD

e A Coherent state is the superposition of every number state, each with a specific probability, with the
aim of creating the state of the lowest uncertainty at the given energy. The higher energy coherent
states should look identical, ie. of the same shape, however they will necessarily be displaced in
phase-space because of their additional energy.

e Time dependence in quantum states should bring about a rotation in phase space; just as an
oscillator in one dimension plots a sinusoidal path and a two dimensional oscillator plots a circle,
the path of the one dimensional oscillator plotted in phase space should carve out a circular ’orbit’
around the origin. For states like the ground state where there is complete circular symmetry there
should be no evolution in time — the ground state of an oscillator is a non-moving object, therefore
it has no time component.

In Schrédinger’s famous thought experiment a cat is placed in a closed box with some poisonous
gas. It is then argued that it cannot be known if the cat is alive or dead until the box is opened
suggesting that the cat is both alive and dead at the same time. It is therefore expected that the
Wigner function for a Schrédinger cat state will be a distribution giving the possibility of being in
either one of two clear states or a combination of both.

Mixed states should return a plot that gives the possibilities of being in clear states but with no
information as to which state a particle would be in before a measurement is taken. It is therefore
expected that the plot is generally flat with a number of small Gaussian peaks equal to the number
of possible states that a particle could be in.

Increasing the temperature of a harmonic oscillator introduces larger probabilities of a particle
being found outside the ground state due to it having extra energy. The Wigner function for the
harmonic oscillator should therefore also be a Gaussian but with the standard deviation increasing
with temperature.

1.3 Layout

Section 2 of this report discusses the methods used in calculating the Wigner function for a given state.
Both numerical and analytical approaches are discusses for a variety of states. In section 3 the resulting
Wigner function plots are displayed and there are discussions of how changes to variables related to each
state change the Wigner function as a whole. The report then moves on to section 4 where the plots are
compared and contrasted with one another and the meanings of the plots are evaluated. Finally section
5 concludes the findings of the project.

2 Method

2.1 Numerical Method

2.1.1 Principles

The MATLAB program that generates the data and the plot from the integrals in section C simply
iterates over values for ¢o and pg, finding a corresponding value for Wy (go, po) for each, then produces a
3-Dimensional surface plot of the results.

Important parts of the program (see section B.1) are the quad functions [3], on lines 40 to 56. These
are programatic methods that evaluate the integral of a function between given limits, adaptively, by
approximating using Simpson’s rule [4, p.61,eq:2.586].

[ 1@t [ ar (5 1 0) (12)

This method is considerably more accurate than simply evaluating the function at a range of points and
summing them as, if the method is allowed to assume that the function tends to 0 near the limits, it can
watch for additional terms becoming negligible and end the summation early. This means a much smaller
dx — the distance between evaluated points — can be used, without incurring massive computational times.
MATLAB’s quad method uses dz = 1 x 10° as standard, which gives reasonable results in a reasonable
timeframe, thus this project uses the default value for dz.

There is a major stumbling block to this integration, if it is attempted numerically. Because there
are values of e~ /" inside the integration there will be very significant rounding errors. The exponent of
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very large negative numbers tends to zero and, due to the nature of storing numbers digitally (namely
the number of bytes devoted to storing a float — a topic outside the scope of this report), very inaccurate
integrals will be produced. In order to counter this dimensional substitution is enacted. If the values of
q and p given to a Wigner function are given in specific multiples of A then this problem can be avoided.
This process, as it is employed here, is documented in appendix C.1.1 for the ground state solution and
used in all the calculations before plotting.

An important choice is the limits for the numerical integration. Too wide and the calculation will
be prohibitavely time consuming, too narrow and important data will not be included rendering the
calculation unacceptably inaccurate. Because this project deals with the harmonic oscillator there is
always an ¢~ *"/" term inside the integral (see eq.6) which allows the assumption that x ~ V/h, in order for
there to be a significant contribution to the integral. Because of the dimensional substitution mentioned
above it is reasonable to assume that there will be no significant contribution to the integral outside the
range —1073 < ¢ < 102, thus defining the integration limits used.

2.1.2 Calculation of Individual States

Each of the equations used in the numerical calculations can be found in appendix C. The MATLAB
code for each of these equations is separated into the integral’s multiplicant, which can be found on the
relevant line in wigner.m, in appendix B.1, and the function inside the integral, which can be found in
the appropriate subsection of appendix B.

2.2 Analytical Method

An analytical solution was found for the ground state, the coherent state and for the time dependent
coherent states. These are the states where the integral in the Wigner function is simple enough to make
their analytical solution simple . The Derrivations appendix (appendix C) holds the working completed
to find each of the analytical solutions for the states mentioned above.

An analytical solution for the Wigner function for the Schréodinger Cat states is simple enough in
principle — but, as explained in appendix C.1.1, there are 4 separable components to the integral; two
are coherent states (and thus an analytical solution is ready from appendix C.2) but the other two, while
solvable, are long winded solutions that offer little benefit over the numerical solutions used below.
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3 Results

3.1 Ground State

The Wigner function plots for the ground state of a quantum harmonic oscillator are shown for an
analytical solution in figure 1 and a numerical solution in figure 2. It can be seen that the results do not
differ and return a Gaussian surface centred on p = ¢ = 0.

3.1.1 Analytical Solution

Analytical Wigner for the Ground State

0.35

momentum (p)

position (q)

Figure 1: An analytically calculated Wigner function for the ground state of the harmonic oscillator
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3.1.2 Numerical Solution

Numerical Wigner for the Ground State

/ ’0‘\\\\
'/III "0“\\&\

Figure 2: A numerically calculated Wigner function for the ground state of the harmonic oscillator
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3.2 Coherent States

Figures 3 and 4 show the Wigner function for a pure coherent state, | a), where « = 0. The plot is
very similar to that for the ground state of the harmonic oscillator but with a shaper, narrower Gaussian
function.

Generally for a coherent state o will be a complex number. The Wigner function for o = (1) is
plotted for an analytical solution in figure 5, whilst figure 6 shows a numerically calculated solution for
the same value of a. The Wigner function has exactly the same Gaussian form in both cases as expected.
It can be seen that the Gaussian shape is identical for that of the & = 0 plot, but translated to be centred
around p = +v/2, ¢ = —v/2 . Using different values of a will always yield the same Gaussian shape but
translated to be centred around p = +v/23q, ¢ = +v2Ra.

3.2.1 Analytical Solution (a = 0)

Analytical Wigner for the Coherent State (o = 0)

momentum (p)

position (q)

Figure 3: An analytically calculated Wigner function for the coherent state of the harmonic oscillator
where oo =0
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3.2.2 Numerical Solution (o = 0)

Numerical Wigner for the Coherent State (o = 0)

Figure 4: A numerically calculated Wigner function for the coherent state of the harmonic oscillator
where oo =0

3.2.3 Analytical Solution (o« =1 — )

Analytical Wigner for the Coherent State (o= 1 - i)

Figure 5: An analytically calculated Wigner function for the coherent state of the harmonic oscillator
where a =1 —1

11
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3.2.4 Numerical Solution (o =1—1)

Numerical Wigner for the Coherent State (o= 1 - 1i)

il

il
Lo,

i

i

mmmmm tum (p)

Figure 6: A numerically calculated Wigner function for the coherent state of the harmonic oscillator
where a =1 —14

12
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3.3 Time Dependant Coherent States

The ability to give the oscillator a position and momentum at a given time leads nicely to considering
the time evolution of the Wigner function. Figure 7 shows the coherent state for a = (1 —4) at four
separate times and figure 8 shows the same plots but viewed from above. A clear circular orbit centred
on p = g = 0 can be observed as would be observed for a classical oscillator. Altering the value of a leads
to different stating positions, but a circular orbit around p = ¢ = 0 will always proceed with the shape
of the Gaussian never altering.

For each of these plots, a =1 — i

3.3.1 Side-View Analytical Solution (0 <t < 7/2)

Analytical Wigner for the Coherent State (o= 1 -i,t=0) Analytical Wigner for the Coherent State (=1 -, t = n/6)

%‘0‘;‘\\\ 0 ’ i
4%:':“““\\ -

‘ \
\ ‘//I'““\\
Wi ; ,;W%\\

0

momentum (p) position (q) momentum (p) position (q)

Analytical Wigner for the Coherent State (=1 -, t = ©/3) Analytical Wigner for the Coherent State (=1 -, t = n/2)

i y A
JIO _ LN
”"o":“s‘\‘*\\ - //’/’,"0:‘:‘\\\\

il

momentum (p) position (q) momentum (p) position (q)

Figure 7: The time dependence of a coherence state
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3.3.2 Bird’s Eye View Analytical Solution (0 <t < 7/2)

@=1-it=0) Analytical Wigner for the Time Dependent Coherent State (o = 1 -, t = 7/6)
5

Analytical Wigner for the Time Dependent Coherent State
5

momentum (p)
S

momentum (p)
S

-5 -5
-5 0 5 -5 0 5
position (q) position (q)
Analytical Wigner for the Time Dependent Coherent State (o= 1 - i, t = ©/3) Analytical Wigner for the Time Dependent Coherent State (o =1 -, t = n/2)
5 5

momentum (p)
S
momentum (p)
S

5 -5 0 5

-5 0
position (q)

position (q)

Figure 8: The same time dependence of a coherence state, viewed from above
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3.4 Fock/Number States

The number states make for an interesting comparison to coherent states as they are generally very
non-classical. The following figures show the number states 0 < n < 4. Each Wigner function has n + 1
turning points in the plot and ripples away from the ¢ = p = 0 point as water would ripple away from the
point of impact if a stone were dropped into a pond. The plots always have circular symmetrical about
p =¢q = 0 and as a result no changes in the shape of the plot would be seen if a time dependence was
introduced.

3.4.1 Numerical Solution (n = 0)

Numerical Wigner for Fock State (n = 0)

0.3

0.25

0.2

|

\\\%\

0.15

0.1

-0.05

-0.1

momentum (p)

position (q)

Figure 9: The Fock state for n = 0
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3.4.2 Numerical Solution (n =1)

Numerical Wigner for Fock State (n = 1)

0.3
0.25

0.2

A i n
l"" "v \\\\

momentum (p) position (q)

Figure 10: The Fock state for n =1

3.4.3 Numerical Solution (n = 2)

Numerical Wigner for Fock State (n = 2)

0.3

momentum (p)

position (q)

Figure 11: The Fock state for n = 2
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3.4.4 Numerical Solution (n = 3)

Numerical Wigner for Fock State (n = 3)

0.3

0.25

0.2

momentum (p) position (q)

Figure 12: The Fock state for n = 3

3.4.5 Numerical Solution (n =4)

Numerical Wigner for Fock State (n = 4)

0.3

momentum (p)

position (q)

Figure 13: The Fock state for n = 4

17
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3.5 Schrodinger Cat States

The Schrodinger cat state plot for & = (—1 + 2¢) is shown in Figure 17. The Wigner functions show two
coherent states centred around £p = +v/23«, £¢ = +v/2Ra, with a mixture of the two pure states, | o)
and | —a), in a wave form in the centre. The value of « defines the position of the two coherent state
peaks and the line of symmetry will always be midway between them. Between the two coherent state
peaks a wave representing a mixture of both | @) and | —«) states can be seen. Altering the value of
¢ alters the phase of this wave. There is a noticeable drop in the amplitude of the superposition waves
when the separation of the two peaks is rotated into the imaginary direction.
All of the following are numerical solutions

3.5.1 a=25¢6=0

Numerical Wigner for Schrodinger Cat State (o0 = 2.5 + 0i, ¢ = 0)

momentum (p)

position (q)

Figure 14: The Cat state for « = 2.5 and ¢ =0
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3.5.2 a=25,¢="/

Numerical Wigner for Schrédinger Cat State (o0 = 2.5 + 0i, ¢ = n/2)

/'5‘3‘\
y//

mmmmm tum (p)

Figure 15: The Cat state for a = 2.5 and ¢ = 7/2

3.5.3 a=25,90=m

Numerical Wigner for Schrodinger Cat State (o0 = 2.5 + 0i, ¢ =)

0.5
0.4
0.3
0.2

0.1

-0.1

-0.2

Figure 16: The Cat state for a =2.5 and ¢p =7
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354 a=-1+2i,¢=r/

Numerical Wigner for Schrédinger Cat State (o = -1.0 + 2i, ¢ = 1/2)

0.5
0.4
0.3
0.2

0.1

-0.1

-0.2

momentum (p)

position (q)

Figure 17: The Cat state for « = —1 + 2¢ and ¢ = 7/2
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3.6 Mixted States

Figures 18 and 19 show the Wigner function plots for a mixture of two pure coherent states | a) and
| —a) each with an equal probability of being occupied. This differs from the Schrodinger cat state due to
the absence of the central combined state wave and just displays two equal Gaussians but with positive
and negative values of values of a.

The following are numerical solutions

3.6.1 a=15 P, =05 P =05

Numerical Wigner for a Mixed State (o = 1.5)

A

momentum (p) -5 4

position (q)

Figure 18: Mixed state at o = 1.5
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3.6.2 a=-1+2i, P, =05 P =05

Numerical Wigner for a Mixed State (o = -1 + 2i)

AN
/XA

)
AN

momentum (p)

position (q)

Figure 19: Mixed state at a« = —1 + 2¢
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3.7 Thermal States

Plots of the Wigner function for a harmonic oscillator in thermal states at temperatures T' = 3,5, TpK are
shown below. The Wigner function is a Gaussian plot that is positive at all points and centred around
p = q = 0. The standard deviation of the Gaussian is related to the value of T. As T is increased the
standard deviation increases and hence the height of the central peak decreases, while the base expands.

3.7.1 w=1,7T=3pK

Numerical Wigner for Thermal State (T = 3e-12 pK)

0.3

0.25

AR
i
A

0.2

0.15

momentum (p)

position (q)

Figure 20: The thermal state for 7' = 3pK
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3.72 w=1,T=5pK

Numerical Wigner for Thermal State (T = 5e-12 pK)

momentum (p) position (q)

Figure 21: The thermal state for "= 5pK

3.73 w=1,T="7pK

Numerical Wigner for Thermal State (T = 7e-12 pK)

0.3
0.25

0.2

/ “ \\
4L "“‘\\

momentum (p)

position (q)

Figure 22: The thermal state for 7' = 7pK
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4 Discussion

4.1 Ground State

As this function is always positive it can simply be compared to a classical harmonic oscillator, with
initial position ¢ = 0 and momentum p = 0. It should be noted that these initial conditions are a very
special case in the classical world being the only conditions that will cause the oscillator to remain at
x = p = 0 and not oscillate at all. The Wigner function shows that a quantum oscillator in the ground
state will also act in the same way and remain at x = p = 0 with no evolution with time. This suggests
that the ground state of the quantum harmonic oscillator can be visualised in the same way that classical
oscillator is visualised.

4.2 Coherent States

For a purely classical oscillator, for which the position and momentum can be known simultaneously,
the probability distribution in phase space would be represented by a delta function centred around the
co-ordinates of the oscillator’s momentum and position. The standard deviation of the Gaussian in a
Wigner function plot can therefore be interpreted as a measure of the uncertainty in the position and
momentum of the quantum state due to Heisenberg’s uncertainty principle. The low standard deviation
values for the plots of the Wigner function for coherent states are therefore a direct consequence of their
inherent low uncertainty. Coherent states are the lowest uncertainty quantum states and hence their
Wigner function plots have the narrowest Gaussian profiles of any quantum state. This means these
states are the closest a quantum state will ever get to a delta function implying that coherent states are
the most classical of all quantum states.

4.3 Time Dependant Coherent States

The plots of the evolution of a Wigner function with time, from an initial coherent state, confirm the
likeness of coherent states to classical states. A classical harmonic oscillator would move in a circular
orbit centred on p = ¢ = 0 in exactly the same way a coherent state does. The only difference is again
the fact that a coherent state is represented by a Gaussian and not a delta function. Choosing a value of
« can be interpreted as setting the initial position and momentum of the oscillator and the subsequent
motion of the oscillator can be visualised as we would visualise a classical oscillator.

4.4 Fock/Number States

Number states nicely show how the Wigner function represents a quasi-probability distribution. For
n > 1 the distribution will always have negative regions, something that could never be seen in a classical
probability distribution. Unlike for the coherent state where we would see the same time evolution as in
the classical world these number states will remain unchanged in time as they have circular symmetry
meaning they have no classical equivalence we can use to visualise them.

4.5 Schrodinger Cat States

Schrédinger cat states, as would be expected, are purely quantum states. The two symmetric Gaussian
states represent two coherent states and the central waveform represents a superposition of the two
coherent states. It can be thought of as there being an infinite possible number of superposition’s of the
two states with each superposition being represented by a value of ¢. The plots show why these states
have the name they do as it would be possible not only for a particle to be in either of the coherent states
but it may also be in a superposition of both the states at the same time. This can be visualised in the
same way as Schrodinger cat, in that it is both alive and dead at the same time.

4.6 Mixture States

Despite the mixed states plot only showing only two Gaussian functions, representing coherent states,
and there being no superposition element, it still cannot be considered as a classical state. At no point
can it be said in which state a particle would be in until an observation is made, a concept that is not
familiar in the classical world. Once a measurement is made on the system it would collapse to being in
one of the two coherent states and we could again visualise this classically, but in general this is a purely
quantum situation.
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4.7 The Thermal State

At temperatures approaching zero Kelvin it can be seen that the Wigner function returns to that of the
ground state. This is because at this point the probability of a particle being in a number state of n > 0 is
very much less than 1 (in this project the cut off probability was set to 10~3) meaning that the oscillator
will just be a ground state system. The idea of a Bose-Einstein condensate being produced at ultra cold
temperatures is based around this idea for very low values of T, normally in the region of a few hundred
nK. Increasing the temperature increases the probability of finding a particle in a number state with
n > 0. This means that the position and the momentum of the oscillator are less precisely known, hence
the standard deviation of the Gaussian increases and the distribution spreads out. In principle the value
of T could be raised to a high enough value that the Wigner function would be flat and it would not be
possible to know the position or momentum of the particle at all.

5 Conclusion

5.1 Conclusion of Results

From this project we can conclude that coherent states are the lowest uncertainty states, a property that
allows them to be classed as the most classical of all quantum states. They can be visualised in the same
way a classical oscillator can be visualised but instead of knowing a position and momentum exactly we
know them to the lowest possible uncertainty. Coherent states also evolve in time in the same way a
classical oscillator would from controllable initial conditions. Number states are conversely very quantum
states that do not change in time and have no classical analogy. Schrodinger Cat states and mixed states
are completely quantum states. There is no way to tell which state a particle will be in without taking a
measurement. Once a measurement has been taken of a particle in the mixed state it will be found to be
in one of the two coherent states and can from then on be treated in a very classical way. A measurement
of a particle in a Schrodinger cat state could yield the same very classical result but it also offers the
highly non-classical option of the particle being measured to be in both states at the same time! A
harmonic oscillator in a thermal state at a temperature T has a Gaussian probability in phase space with
the standard deviation of the Gaussian controlled by the Temperature. At temperatures of T' < 10~ 2K
the Wigner function returns to that of the ground state oscillator as the probability of a particle being
in a state with n > 0 is less than 1073, but as the temperature increases the probabilities of being in
each number state become much closer to each other and so it becomes very hard to say where a particle
would be. This leads the quantum harmonic oscillator to be a very high uncertainty state for this model
at temperatures 7 > 10711 K.

5.2 Further Study

It would be interesting to continue to study the time dependence of the very quantum states . It would
be intriguing to discover how a Schrodinger cat state changed with time and if the probability of being
in both states increased or decreased.
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B Code
B.1 The Main Program

wigner.m

% Physical Variables
Coherent States
alpha = -1+2i;

o
°
o
°

% Number States
= 4;

=]

% Cat States
phi = pi;

% Thermal States
hbar = 1.055e-34;
K_B = 1.38e-23;
omega = 1;

T = 3e-12;
%% Calculation Variables
resolution = 51;

g_range = [1,-1]1%5;
p_range = [1,-1]1%5;
integral_limit = 1E4;

%% Program Logic

% For the Thermal State:
A = hbar * omega / (K_B * T);

prob = []1;
lastprob = 1; $ just to get things going
j = 0;
% Create probabilities for every number state until the probability 1is <
sufficiently low
while lastprob > 1E-3
lastprob = exp(-A*j)*(1 - exp(-4));
prob = [prob lastprobl];
=3+ 1
end
% For all calculations
W = zeros(resolution,resolution);
g_step = (q_range(l)-q_range(2))/resolution;
p_step = (p_range(1l)-p_range(2))/resolution;

gs = linspace(q_range(2),q_range (1) ,resolution);
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B.1 The Main Program B CODE

ps = linspace(p_range (2),p_range (1) ,resolution);

% Create a progress bar to show the progress of the integration
wait = waitbar(0,’Please be patient’);

tic

for gq_i=1:resolution
q = q_range(2) + g_i*q_step;

for p_i=1:resolution
p = p_range(2) + p_i*p_step;
$ Doing integration over ’“all’ x
% N.B. MATLAB takes arguments the wrong way round so p comes before g

)

% Only one of the following will be left uncommented so that the <
required integral is computed

% Ground State
W(p_i,q_i) = (2 * pi~1.5)"-1 * quad(e@(x)f_psi_0(q,p,x),-integral_limit«
,integral_limit);

% Coherent State
W(p_i,q_i) = (2 * pi~1.5)"-1 *x quad(@(x)f_alpha(q,p,x,alpha),-«
integral_limit,integral_limit);

% Number States
W(p_i,q_i) = (2 * pi~1.5)"-1 *x quad(@(x)f_psi_n(q,p,x,n),-«
integral_limit,integral_limit);

% Schrédinger Cat States

W(p_i,q_i) = (2 + 2xcos(phi)*exp(-2*xalpha*alpha))~-0.5 * ((2*pi)~-1) *
quad(@(x)f_sch_cat(q,p,x,alpha,phi),-integral_limit ,«
integral_limit);

% Mixed State
W(p_i,q_i) = ((2xpi~1.5)"-1) * quad(@(x)f_mixed(q,p,x,alpha),-«
integral_limit,integral_limit);

% Thermal State
W(p_i,q_i) = (2 * pi~1.5)"-1 * quad(@(x)f_therm(q,p,x,prob),-«
integral_limit,integral_limit);

amt = ((q_i-1)*resolution + p_i)/resolution~2;
if (mod(p_i,6) == 0)
waitbar (amt ,wait,sprintf(’Calculating Wigner Function. ETA: %.0fs «
’,toc/amt * (1 -amt)));
end
end
end
close (wait) ;

%% Visualizing

% The Numerical Solution

subplot (1,2,1); % If needed, the numerical and analytical solutions can be
plotted side by side

surf(qgs,ps,real (W));

axis([q_range (2) ,q_range (1) ,p_range (2) ,p_range (1) ,0,0.3]1);

title (’Numerical Wigner for a particular state’);

xlabel (’position (q)’);

ylabel (’momentum (p)’);

axis([q_range(2) ,q_range (1) ,p_range(2) ,p_range(1)]1);
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% The Analytical Solution

[mesh_qgs ,mesh_ps] = meshgrid(qgs,ps);

% As before, one of the following is left uncommented if an analytical plot is<>
desired

oo

Ground State

= (1/pi) .* exp(- mesh_qgs."2 - mesh_ps."2);

Coherent State

= 1/pi * exp(-(mesh_qgs - 2*xreal(alpha)/sqrt(2)) .2 - (mesh_ps - 2ximag(alpha«<
)/sqrt (2)).72);

=

oo

=

subplot (1,2,2); % Comment if side—by—side plot not desired
surf(gs,ps,real(W));

title (’Analytical Wigner for a particular state’);

xlabel (’position (q)’);

ylabel (’momentum (p)’);
axis([q_range(2) ,q_range (1) ,p_range(2) ,p_range(1)]1);

B.2 The Integral Functions
B.2.1 The Ground State

f psi_O.m

The internals of the intergral of the Wigner function for the ground
state of the harmonic oscillator

function f = f_psi_0(q,p,x)

f = exp(-(q."2) - (x.72)/4) .* exp(1li .* p .*x x);

o
°
o
°

B.2.2 The Coherent State

f alpha.m

% The internals of the intergral of the Wigner function for a coherent
% state (alpha) of the Harmonic Oscillator

function f = f_alpha(q,p,x,alpha)

p-J = p - 2ximag(alpha)/sqrt(2);

q_J = q - 2xreal(alpha)/sqrt(2);

f = exp(-q_J."2 - (x.72)/4 - 1i*xp_J*x);

B.2.3 The Time Dependent Coherent State

wigner time.m

Special case: Time Dependant Coherent States
% Physical Constants

oo oo

= B

1;
= 1;
%% Calculation Variables
resolution = 51;
g_range = [1,-1]%5;
p_range = [1,-1]%5;
[mesh_qgs ,mesh_ps] = meshgrid(qs,ps);

%% Plotting
n = 1;
for t = linspace(0,pi/2,4)
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W = 1/pi * exp(-(mesh_gs * cos(w * t) - mesh_ps * sin(w*t) - 2*real(alpha)«
/sqrt (2)) .72 - (mesh_qgs * sin(w * t) + mesh_ps * cos(w*xt) - 2*imag(«
alpha)/sqrt (2)).°2);

subplot(2,2,n);

surf(gs,ps,real (W));

title (sprintf(’Analytical Wigner for the Coherent State (\\alpha = 1 - i, «
t = %.0f/4 * \\pi/2)’,n));

xlabel (’position (q)’);

ylabel (’momentum (p)’);

axis([q_range(2) ,q_range (1) ,p_range (2) ,p_range (1) ,min(min(W) ) ,max(max(W) )«

;
pause(0.2) ;
n =n + 1;

end

B.2.4 The Fock States

f psi_ nm

The internals of the intergral of the Wigner function for the Number

oo oo

states for the Harmonic Oscialltor

function f = f_psi_n(q,p,x,n)

f = exp(1li * p * x)/(factorial(n) * 2°n) .* Hermite(q - x/2,n) .* Hermite(q + «
x/2,n) .* exp(-q."2 - x.72/4);

B.2.5 The Schrédinger Cat State

f sch cat.m

% The internals of the intergral of the Wigner function for a Schrédinger
% Cat state of a Harmonic Oscillator

function f = f_sch_cat(q,p,x,alpha,phi)

p_J = p - 2ximag(alpha)/sqrt(2);

q_J = q - 2xreal(alpha)/sqrt(2);

p_K = p + 2ximag(alpha)/sqrt(2);

q_K = gq + 2xreal(alpha)/sqrt(2);

f = exp(-q_J"2 - (x.72)/4 - 1i*p_J*x) + ... % One coherent State
exp(-q_K.”2 - (x.72)/4 - 1li*p_K#*x) + ... 7 Opposide Coherent State

exp( 1i * p * x) .* (
exp(+ 1ixphi - alpha * conj(alpha) - q~2 - x.72/4 - 2i *x q * imag(+
alpha) + x * real(alpha)) +
exp(- 1lixphi - alpha * conj(alpha) - q°2 - x.72/4 + 2i *x q * imag(«
alpha) - x * real(alpha))
)

B.2.6 The Mixed State

f mixed.m

The internals of the intergral of the Wigner function for a mixed
state (alpha) of the Harmonic Oscillator

function f = f_mixed(q,p,x,alpha)

p_J = p - 2ximag(alpha)/sqrt(2);

9o
°
o
°

q_J = q - 2*real(alpha)/sqrt(2);

p_K = p + 2ximag(alpha)/sqrt(2);

q_K = q + 2xreal(alpha)/sqrt(2);

f = 0.5 x exp(-q_J."2 - (x.72)/4 - 1ixp_J*x) + 0.5 * exp(-q_K."2 - (x.72)/4 - <
1i*p_K*x);
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B.2.7 The Thermal State

f therm.m

The internals of the intergral of the Wigner function for the Thermal
state of the Harmonic Oscialltor
function f = f_therm(q,p,x,probs)
n = 0;
f = 0;
for prob=probs
f = f + prob * exp(1i * p * x)/(factorial(n) * 2°n) .* Hermite(q - x/2,n) <
.* Hermite(q + x/2,n) .* exp(-q."72 - x.72/4);
n=mn+ 1;
end

o
°
o
°

B.3 Calculating Hermite Polynomials

Hermite.m

o

% Calculates the (Physicist’s) Hermite Polynomial

function H = Hermite(y,n)

switch (n)

% Some pre—calculated hermite polynomials to make things speedier

case 0

H=1,;
case 1

H=2x*y;
case 2

H=4%xy.72 - 2;
case 3

H=28*y.73 - 12x%y;
otherwise

H = 2+y.xHermite(y,n-1) - 2x(n-1)*Hermite(y,n-2);
end
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C DERRIVATIONS

C Derrivations

C.1 Ground State Wigner Function
C.1.1 For the Numerical Calculation

Using the harmonic oscillator’s ground state wavefunction from (eq.6) and the integral form of the Wigner
function (eq.3):

Wiq,p) = 271Th/_0;1/;*(q_;).w(q+§)e(—im/h)d$

1/2 z\2 1/2 )\ 2
1 1 -3 1 5 ipz
= — exp (q 2) . exp 7((]4— 2) e P dy
2rh J_oo \ay/m 2a? a\/T 2a?
1 > 2 x2 2 m2 —ipz/242h
— - _ s _ bl a*h g
sz oo (- (¢4 e - (@0 rar)

At this point, as explained in section 2.1.1, the position and momentum variables are replaced, altering
the length and mass dimensions like so:

QO—g, [900_%7 Tdﬁj = } Pozp%f
W (90, p0) 1 / i ) cmimang
, = — exp|—q5——)e To - a
40, Po 2rha/T J_o P77 0
1 o0 5 I%
27T\/7?h [oo P ( 1 4 oo "o

But W (g, po) does not have the correct dimensions for the changes we made above. Because we
know that the integral of the Wigner function over all phase space must be 1 — it is a probability — we

can state that
// W (qo,p0) dgodpo = 1

And thus that

@@WO(QOapO) = W (qo,po)
q p

1

ﬁWO(QOapO) = W (qo,po)

And so the final (numerically solvable) Wigner equation for the ground state of the harmonic oscillator
is found as:

%% _ 1 > 2 {L'% .
0 (qo,po) = m/m exp ( =4p = 7 — WPoo dxg (13)

C.1.2 The Analytical Solution

Taking the inside of the exponential in the numerical equation (eq. 2) and completing the square

2

x .
—Zo—zpoxo—qg = —(Az+B’-C—-¢q

o . \2
—(?-Hpo) +p5—ag

Letting y = (””—20 + 2ip0), and thus jTyo = 2 then the Wigner equation becomes an analytically solvable
integral:
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> 2
Wo (g0, p0) = 27rfeXp( qg)/ e Vdy-2
1

= meXp (pg _(I%) NG

Giving the final solution for the Wigner function of the Ground State Harmonic Oscillator:
1
Wo (90, p0) = — exp (P — 5) (14)

C.2 Coherent States

C.2.1 For Numerical Calculation

Using the harmonic oscialltor’s coherent state wavefunction from (eq.7) as well as the definitions that:

pn =2R{a}; z, =28{a} = a= % (Tp + ipn)

The wavefunctions can be refactored to become:

1 1z ) / 2/ 1 q —Z D ?
TnPnf4a _—Ppl4 . = n L
(a\/%) ‘ c P T (a vz \f)

Lo x S O S R T A 1 o(a —wa g
w@(%)%(q*z) agm’ eXp(g <a \@+ﬂ> P\ 3 \e" 8

1 x? T
oo (it 2 )
a

a\/T 4a?

Where (making the same dimensional substitutions as before):

Yo ()

S

q1 = —% :7—\/7§R{C¥} pP1 = % slb/f %:g—ﬁ%{a},lﬁ:%

Continuing using the integral form of the Wigner function (eq.3):

Wigp) = lel\ﬁrh/_o;w*(q_z)'qﬁ(Q‘F;)e(_im/h)dx

1 o 72 )
W (q0,p0) = m/ exp (—qf - zo — Za:op;l) dxrg - a

2
Wo (q0,p0) = %f/ eXP( ai — 4 Zl’op1> dxg

It is clearly visible that this has the same form as for the Ground state, except that

a = q—V2R{a}
P = Po—\/ﬁg{a}

Hereby proving that the wigner function of the coherent state is simply a transposition of the wigner
function of the ground state in phase-space according to the value of «.

C.2.2 The Analytical Solution

In the same fashion as with the Ground state solution above it can be found that:

Wo (g0, po) = %eXp (ni —qi) = %eXp <(po - V23 {04})2 - (QO — V2R {a}>2> (15)
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C.3 Schrodinger Cat States

Schrédinger Cat states have a wavefunction:

[0 (9)) = N(9)(la)+e?|—a))
N (¢) (2 + 2cos (¢) 67202)_ :

Using the Dirac notation form of the Wigner function

Wn) = g [ G 216 ON6) g+ Do

It can be seen that replacing the v (¢) with the Cat wavefunction will create four terms. Two of them
will be the coherent states of a and —«a while the remaining two will be superpositions of a and —a.
Using the following coherent state identity these can be solved.

@l8) = e (=g (ol +187 - 20°5) )
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